1. (10 p) Evaluate the integral using integration by parts:
\[\int (x + 1)^2 e^x \, dx \]

2. (10 p) Evaluate the integral of the following power product of the trigonometric functions:
\[\int \cos^3 x \sin^4 x \, dx \]

3. (15 p) Assuming that the following parametric equations define \(x \) and \(y \) implicitly as differentiable functions \(x = f(t), y = g(t) \), find the slope of the curve \(x = f(t), y = g(t) \) at the given value of \(t = 0 \):
\[x + 2x^{3/2} = t^2 + t \; ; \; y \sqrt{t^2 + 1 + 2t \sqrt{t}} = 4 \; ; \; t = 0 \]

4. (15 p) Find the length of the curve given by the polar coordinate equation as follows:
\[r = 8 \sin^3 \left(\frac{\theta}{3} \right) ; \; 0 \leq \theta \leq \frac{\pi}{4} \]

Length of a polar curve:
\[L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta} \right)^2} \, d\theta \]

5. (10 p) Use the integral test to determine if the following series converges or diverges. Be sure to check that the conditions of the Integral Test are satisfied:
\[\sum_{n=1}^{\infty} e^{-2n} \]

6. (10 p) Use any method to determine if the following series converges or diverges:
\[\sum_{n=1}^{\infty} n! e^{-n} \]

7. (10 p) Find the Taylor polynomials of the orders 0, 1, 2, and 3 generated by \(f(x) \) at \(a \):
\[f(x) = \frac{1}{x} ; \; a = 2 \]

8. (10 p) Find the Maclaurin series for the function \(f(x) = \frac{1}{1+x} \)

9. (15 p) An important partial differential equation that describes the fall and rise of the water \((w: \text{wave height})\) as the waves go by \((x: \text{distance})\) in time \(t\) can be represented by the one-dimensional wave equation as follows:
\[\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2} \]

Show that \(w = f(u) \), where \(f \) is a differentiable function of \(u \) and \(u = a(x + ct) \), where \(a \) is a constant satisfies the wave equation given above where \(c \) is the velocity with which the waves are propagated.

10. a) (15 p) Express \(\frac{\partial z}{\partial u} \) and \(\frac{\partial z}{\partial v} \) as the following function of \(u \) and \(v \) both by using the Chain Rule and by expressing \(z \) directly in terms of \(u \) and \(v \) before differentiating:
\[z = 4e^x \ln y \; ; \; x = \ln(u \cos v) \; ; \; y = u \sin v \]

b) (5 p) Evaluate \(\frac{\partial z}{\partial u} \) and \(\frac{\partial z}{\partial v} \) at the given point \((u, v) = (1.3, \frac{\pi}{6})\).

Taylor’s Formula:
\[f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^n(a)}{n!}(x - a)^n + R_n(x) \]
1. Apply IBP (Integration by parts) as follows:

\[\int u\,dv = uv - \int v\,du \]

\[u = (x + 1)^2, \, du = 2(x + 1)dx; \, dv = e^x\,dx, \, v = e^x \]

\[l = \int (x + 1)^2 e^x\,dx = (x + 1)^2(e^x) - \int e^x(2x + 1)\,dx = (x + 1)^2(e^x) - 2 \int e^x(x + 1)\,dx \]

Apply again IBP for the inside integral called \(A = \int e^x(x + 1)\,dx \) as follows:

\[u = (x + 1), \, du = dx; \, dv = e^x\,dx, \, v = e^x \]

\[A = \int e^x(x + 1)\,dx = (x + 1)(e^x) - \int e^x\,dx = e^x(x + 1) - e^x + C' \]

\[l = (x + 1)^2(e^x) - 2[e^x(x + 1) - e^x + C'] \]

\[l = [(x + 1)^2 - 2(x + 1) + 2](e^x) + C \]

2.

\[\int \cos^3 x \sin^4 x\,dx = \int \cos^2 x \sin^4 x \cos x\,dx \]

Apply u-substitution as follows:

\[u = \sin x, \, du = \cos x\,dx \]

\[\int \sin^4 x(1 - \sin^2 x)\cos x\,dx = \int u^4(1 - u^2)\,du = \int u^4\,du - \int u^6\,du = \frac{u^5}{5} - \frac{u^7}{7} + C \]

\[\frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C \]

3. Given: \(x + 2x^{3/2} = t^2 + t; \quad y\sqrt{t+1} + 2t\sqrt{y} = 4; \quad t = 0 \)

Implicit differentiation of these equations respectively gives:

\[\frac{dx}{dt} + 3x^{1/2} \frac{dx}{dt} = 2t + 1 \rightarrow (1 + 3x^{1/2}) \frac{dx}{dt} = 2t + 1 \rightarrow \frac{dx}{dt} = \frac{2t + 1}{(1 + 3x^{1/2})} \]

\[\frac{dy}{dt} \sqrt{t+1} + y \left(\frac{1}{2}\right) (t+1)^{-1/2} + 2\sqrt{y} + 2t \left(\frac{1}{2} y^{-1/2}\right) \frac{dy}{dt} = 0 \]

\[\rightarrow \frac{dy}{dt} \sqrt{t+1} + \frac{y}{2\sqrt{t+1}} + 2\sqrt{y} + \left(\frac{t}{\sqrt{y}}\right) \frac{dy}{dt} = 0 \rightarrow \left(\sqrt{t+1} + \frac{t}{\sqrt{y}}\right) \frac{dy}{dt} = 0 \]

\[= -\frac{y}{2\sqrt{t+1}} - 2\sqrt{y} \rightarrow \frac{dy}{dt} = \frac{-\frac{y}{2\sqrt{t+1}} - 2\sqrt{y}}{\sqrt{t+1} + \frac{t}{\sqrt{y}}} = \frac{-y\sqrt{y} - 4y\sqrt{t+1}}{2\sqrt{y}(t+1) + 2t\sqrt{t+1}} \]

\[\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{-y\sqrt{y} - 4y\sqrt{t+1}}{2\sqrt{y}(t+1) + 2t\sqrt{t+1}}}{\left(\frac{2t + 1}{(1 + 3x^{1/2})}\right)}; \]

\[t = 0 \rightarrow x + 2x^{3/2} = 0 \rightarrow x(1 + 2x^{1/2}) = 0; \rightarrow x = 0; \, t = 0 \]

\[t = 0 \rightarrow y\sqrt{0+1} + 2(0)\sqrt{y} = 4 \rightarrow y = 4 \]
\[
\frac{dy}{dx} \bigg|_{t=0} = \left(\frac{-4\sqrt{4} - 4(4)\sqrt{0 + 1}}{2\sqrt{4}(0 + 1) + 2(0)\sqrt{0 + 1}} \right) = -6
\]

4. The length of the curve given by the polar coordinate equation as follows:

\[
r = 8 \sin^3\left(\frac{\theta}{3}\right); \quad 0 \leq \theta \leq \frac{\pi}{4} \quad \Rightarrow \quad \frac{dr}{d\theta} = 8 \sin^2\left(\frac{\theta}{3}\right) \cos\left(\frac{\theta}{3}\right)
\]

\[
L = \int_0^{\frac{\pi}{4}} \sqrt{8 \sin^3\left(\frac{\theta}{3}\right)^2 + \left[8 \sin^2\left(\frac{\theta}{3}\right) \cos\left(\frac{\theta}{3}\right)\right]^2} \, d\theta = \int_0^{\frac{\pi}{4}} \sqrt{64 \sin^4\left(\frac{\theta}{3}\right)} \, d\theta
\]

\[
= \int_0^{\frac{\pi}{4}} 8 \sin^2\left(\frac{\theta}{3}\right) \, d\theta = \int_0^{\frac{\pi}{4}} 8 \left[1 - \cos\left(\frac{2\theta}{3}\right)\right] \, d\theta = \int_0^{\frac{\pi}{4}} 4 - 4 \cos\left(\frac{2\theta}{3}\right) \, d\theta
\]

\[
= \left[4\theta - 6 \sin\left(\frac{2\theta}{3}\right)\right]_0^{\frac{\pi}{4}} = 4 \left(\frac{\pi}{4}\right) - 6 \sin\left(\frac{\pi}{6}\right) - 0 = \pi - 3
\]

5. \(f(x) = e^{-2x}\) is positive, continuous, and decreasing for \(x \geq 1\).

\[
\int_1^\infty e^{-2x} \, dx = \lim_{b \to \infty} \int_1^b e^{-2x} \, dx = \lim_{b \to \infty} \left[-\frac{1}{2} e^{-2x}\right]_1^b = \lim_{b \to \infty} \left(-\frac{1}{2} e^{2b} + \frac{1}{2} e^2\right) = \frac{1}{2} e^2
\]

\[
\int_1^\infty e^{-2x} \, dx \text{ converges} \quad \sum_{n=1}^{\infty} e^{-2n} \text{ converges}
\]

6. The series given diverges by the Ratio Test as follows:

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n + 1)! e^{-(n+1)}}{n! e^{-n}} = \lim_{n \to \infty} \frac{(n + 1)! e^n}{e^{n+1} n!} = \lim_{n \to \infty} \frac{n + 1}{e} = \infty
\]

7. Taylor’s Formula:

\[
f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \ldots + \frac{f^n(a)}{n!}(x - a)^n + R_n(x)
\]

\[
R_n(x) = \frac{f^{n+1}(c)}{(n+1)!} (x-a)^{n+1} \text{ for some } c \text{ between } a \text{ and } x
\]

Apply Taylor’s formula given above to the function up to 3rd order derivative as follows:

\[
f(x) = \frac{1}{x} = -x^{-1}; \quad f(a) = f(2) = \frac{1}{2}; \quad f'(x) = -x^{-2} \Rightarrow f'(2) = -\frac{1}{4}; \quad f''(x) = 2x^{-3}
\]

\[
\Rightarrow f''(a) = f''(2) = \frac{1}{4}; \quad f'''(x) = -6x^{-4} \Rightarrow f'''(a) = f'''(2) = -\frac{3}{8}
\]

Zero, first, second and third order polynomials generated by \(f(x) = \frac{1}{x}\) according to Taylor’s formula were given respectively as follows:

\[
P_0(x) = f(a) = \frac{1}{2}; \quad P_1(x) = f(a) + f'(a)(x - a) = \frac{1}{2} - \frac{1}{4}(x - 2)
\]

MATH 110_Fall12-13ResitExam-2_Q&As Prof.Dr. Hüseyin Öğuz Page 3 of 5
\[P_2(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 \]
\[P_3(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 = P_2(x) - \frac{1}{16}(x-2)^3 \]

8. Maclaurin series generated by \(f(x) = \frac{1}{1+x} \) is:
\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n + \ldots
\]
We need to find \(f(0), f'(0), f''(0), \ldots \) according to the formula given above as follows:
\[
f(x) = \frac{1}{1+x}; f'(x) = -(1 + x)^{-2}; f''(x) = 2(1 + x)^{-3}; f'''(x) = -3!(1 + x)^{-4} \rightarrow f^n(x)
\]
\[
= (-1)^n n! (1 + x)^{-n-1} \quad \Rightarrow \quad f(0) = 1; f'(0) = -1; f''(0) = 2; f'''(0) = -3!; \ldots
\]
\[
\rightarrow f^n(0) = (-1)^n n!
\]
\[
\sum_{n=0}^{\infty} (-1)^n n! x^n = \sum_{n=0}^{\infty} (-1)^n x^n = \sum_{n=0}^{\infty} (-x)^n = 1 - x + x^2 - x^3 + \ldots + (-1)^n x^n + \ldots
\]

9. To show the following equation given to be a solution of the partial differential equation, we need to take second order partial derivative according to \(t \) and second order partial derivative according to \(x \) as follows:
\[
w = f(u), \text{where } f \text{ is a differentiable function of } u \text{ and } u = a(x + ct)
\]
\[
\frac{\partial w}{\partial t} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial t} = \frac{\partial f}{\partial u} (ac)
\]
\[
\frac{\partial w}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} = \frac{\partial f}{\partial u} (a)
\]
\[
\frac{\partial^2 w}{\partial x^2} = \left(a \frac{\partial^2 f}{\partial u^2} \right) a = a^2 \frac{\partial^2 f}{\partial u^2}
\]
\[
\frac{\partial^2 w}{\partial t^2} = (ac) \frac{\partial^2 f}{\partial u^2} (ac) = a^2 c^2 \frac{\partial^2 f}{\partial u^2}
\]
\[
\text{Thus}
\]
\[
\frac{\partial^2 w}{\partial t^2} = a^2 c^2 \frac{\partial^2 f}{\partial u^2} = c^2 \frac{\partial^2 w}{\partial x^2}
\]

10. a) By using Chain Rule:
\[
\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} = (4e^{x\ln y}) \left(\frac{\cos v}{u \cos v} \right) + \left(\frac{4e^x}{y} \right) (\sin v) = \frac{4e^{x\ln y}}{u} + \frac{4e^x \sin v}{y}
\]
\[
= \frac{4(u \cos v) \ln(u \sin v)}{u} + \frac{4(u \cos v) (\sin v)}{u \sin v} = 4(\cos v) \ln(u \sin v) + 4(\cos v)
\]
\[\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v} = (4e^{x} \ln y) \left(\frac{-\sin v}{u \cos v} \right) + \left(\frac{4e^{x}}{y} \right) (u \cos v) = - (4e^{x} \ln y) (\tan v) + \frac{4e^{x} u \cos v}{y} \]

\[= - [4(u \cos v) \ln (u \sin v)] (\tan v) + \frac{4(u \cos v) (u \cos v)}{u \sin v} \]

\[= (-4u \sin v) \ln (u \sin v) + \frac{4u \cos^{2} v}{u \sin v} \]

By expressing \(z \) directly in terms of \(u \) and \(v \) before differentiating:

\[z = 4e^{x} \ln y = 4(u \cos v) \ln (u \sin v)\]

Differentiation of the last expression gives the same result as follows:

\[\frac{\partial z}{\partial u} = (4 \cos v) \ln (u \sin v) + 4(u \cos v) \left(\frac{\sin v}{u \sin v} \right) = (4 \cos v) \ln (u \sin v) + 4 \cos v ; \quad \frac{\partial z}{\partial v} = (-4u \sin v) \ln (u \sin v) + 4(u \cos v) \left(\frac{u \cos v}{u \sin v} \right) \]

\[= (-4u \sin v) \ln (u \sin v) + \frac{4u \cos^{2} v}{u \sin v} \]

b)

\[\left. \frac{\partial z}{\partial u} \right|_{(u,v)} = \left. \frac{\partial z}{\partial u} \right|_{(1.3, \pi/6)} = \left(4 \cos \frac{\pi}{6} \right) \ln \left(1.3 \sin \frac{\pi}{6} \right) + 4 \cos \frac{\pi}{6} = 1.97 \]

\[\left. \frac{\partial z}{\partial v} \right|_{(u,v)} = \left. \frac{\partial z}{\partial v} \right|_{(1.3, \pi/6)} = \left[-4(1.3) \sin \frac{\pi}{6} \right] \ln \left(1.3 \sin \frac{\pi}{6} \right) + \frac{4(1.3) \cos^{2} \frac{\pi}{6}}{\sin \frac{\pi}{6}} = 8.92 \]